Let f, g, h be three functions R ->R and
consider their values at 0, 1 and 2.
Which of the following are logically correct

statements?

a. If f, g h arelinearly independent then so are

the three vectors
f(0) g(0) h(0)
f(1) g(1) h(1)
f(2) g(2) h(2)
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b. If f, g, h are dependent, then so are the three

c. If the three vectors
are linearly

f(0) || 8(0)
f(1) || &)
independent then f(2) g(2)

soare f, g h. (Cone
lhcowect™ Mpct

d. If the three vectors | f(0) || g(0)
f(1) || 8
f(2) || 82)

are linearly
dependent then
so are f, g, h.
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Section 5.1: second order linear differential
equations
Section 5.2: higher order linear differential
equations

These two sections do the same thing.

Vocabulary review:

* Linear, homogeneous differential equations
e Solution space, initial value problem

e Linearly independent solutions

New vocabulary

e superposition of solutions = The ssledbwn) Fo

e characteristic equation a pdpgeens

a Ceclov T)saf-@ .

We learn:

e The Wronskian

 Solutions of linear homogeneous d.e.’s form
a vector space.

e How to use the characteristic equation to
solve homogeneous equations with constant
coefficients

e What to do about non-homogeneous
equations: complementary functions.



Question 5 from Section 5.1 (like questions 3
and 10 on the HW).

Given two solutions
y_1 =e/x and y2—e {2x} LUMD

of the equation y” -3y’ +2y =0 NResr, ZM[A,.ZU
find a particular solutlon with

y(0)=1 and y'(0) =

X
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Independence using the Wronskian

Definition
Suppose we are given n functions Yo, ~ \‘j“/
Their Wronskian is the function
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Theorem (easy and useful part of bigger theorem)
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5.1 question 26 (like question 25)
Show that 2cos x + 3sin x, 3cos x - 2sin x

are independent.
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Example done for section 4.7.
Are the functions e/x, sin x and 1 linearly
independent?
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Pre-clags Warm-up!!!
Which of the following statements did we prove last time?

Let y_1, ..., y_n be functions of x and let W(x) be their
Wronskian.

\/a. If y_1,...,y_n are dependent then W(x) is identically zero.

b. If W(x) is identically zero then y_1, ..., y_n are dependent.

c. If y_1,...,y_n are independent then W(x) is not identically zero
Jd. 1f W(x) is not identically zero then y_1, ..., y_n are independent

e. We didn’t prove any of these last time.
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Theorems about the existence of solutions

The following theorem combines
from Section 5.1: Theorems 1, 4
from Section 5.2: Theorems 1, 4.

Theorem. The solutions to the nth order linear d.e

£+ PR Mt Py 8y = O
where p_1, ..., p_n are continuous

form a vector space of dimension n.

Theorem 2. For each number a and for all
numbers b_0O, ..., b_(n-1), there is a unique
solution y with

y(@) =b_0, y'(a) = , YA(n-1) (@) = b_(n-1)
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Solving linear differential equations with constant
coefficients: the characteristic equation

These look like ay” + by’ + cy =0 where
a, b, c are numbers.

pj’ —\ré Ii‘ e
Shbihhuie

av’e’™ + bre™ +ce”™ =0
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art+ br+c =0
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Like Section 5.1 questions 33-42.

Find the general solution of the differential
equation

y'-2y'-3y=0
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Like Section 5.1 questions 33-42.

Find the general solution of the differential
equation

y'+4y" +4y =0
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A stronger theorem about the Wronskian

Theorem. Suppose the n function y_1, ... y_n
are solutions of a homogeneous nth order linear
d.e. with continuous coefficients of

Y, ..., YAN-1).

a. If they are dependent then their Wronskian is
identically 0. We M 1738l |

b. If they are independent then their Wronskian is
never 0.




Particular and complementary solutions

Like 5.2 questions 21-24

24. A non-homogeneous d.e., a
complementary solution y_c and a particular
solution y_p are given.

Find a solution satisfying the initial conditions:

= 2y'+ 2y =2, y(©)=4, YO -8
jc = C, @Ku-gx +C2de,x§m2<

gf) :X+{
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Non-homogeneous equations

wtﬂﬂhww + - +h® f&

be a non-homogeneous nth order linear d.e.
The associated homogeneous equation is the
same, with 0 on the right instead of f(x).

Suppose the p_i are continuous.

Theorem 5.
Let y_p be a (particular) solution of the non-
homogeneous equation, and let y_1, ... y_n

be a basis for the solution space of the
associated homogeneous equation.
Then every solution of the non-homogeneous
equation can be written

dp " J<

where y c=c_1y_1+ ...+ c_ny_n isa
solution of the associated homogeneous
equation.

RecSow ij < o sledion Than
Y- Y colves e homojuwi
Byealion 32 Y-l =g

= C)H) + -~ +Chjn .

W j:(‘jP+jQ



What is the general solution to the equation
y// _ y == O .?

2X
al | o E| £ &l
b. C x4 ¢, x
X X
C. CL'& e c?-X e
X -X
A. c e +ce
e. None of the above.

where c_1, c_2 are constants.
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